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Abstract

The Principle of Least Action (PLA) can be confusing to students, in part due to
the Calculus of Variations, but also because of the subtleties of the actual principle.
Can there exist two local minimums? Do different observers in different IRFs (Inertial
Reference Frames) calculate different actions? Is action a tangible entity like velocity?
In an effort to address the questions and misconceptions that can arise from the Action
principle, I develop three numerical simulations that put the PLA to use: light reflecting
in equal angles, light refracting in different mediums, and light moving between two
points in the least time.

1 Introduction

The Action Principle can be difficult for students, in particular because of its abstract nature
and lack of exposure to students. The action itself could be hard to digest, given its intangible
nature, unlike velocity or even acceleration which can be understood intuitively [2]. Students
may be confused as to why the Lagrangian must be T-V instead of T+V, as mechanical
energy is [4]. They may be confused by the abstraction of ”nearby paths” and why light
can’t simply travel in straight lines to minimize distance [8]. Furthermore, the Calculus
of Variations is not about minimizing a variable, but a function, which can be difficult for
students to comprehend [3] — especially when applied to the nearby paths of the PLA.
Students are not given adequate time to understand Variational Calculus before it’s applied
to Physics, as PLA and COV are often simultaneously introduced, exacerbating student
confusions and misconceptions [5].

In light of these difficulties, numerical simulations may help students understand the
PLA. Interactive Simulations have proven to be useful tools in teaching high school and
undergraduate students Physics alike, particularly in distilling abstract ideas into tangible
ones [13]. For instance, OpenRelativity [15], a product of MIT’s GameLab, has done exactly
so with Special Relativity and PhET’s Quantum Mechanics simulations [16] have done so, as
well. However, few simulations have accounted for the intersection in between — the PLA.
The PLA motivates the Relativistic principle of following the world-line of maximal aging,
as well as the Quantum Mechanical principle of exploring all paths. This paper takes a
slightly different approach in that it encourages students to engage in the actual creation of
the programs contained within, so that students are motivated to understand the mechanics
of the PLA, hence discovering the Euler-Lagrange Equations while replicating the PLA.
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The purpose of this paper is to present three numerical simulations of the Action Principle
at work, all involving light. In doing so, students leave with a better intuitive understanding
of the PLA. The first simulation is that of light reflecting in equal angles off a metal [11] [9].
The second simulation involves light refracting through different materials [12]. The final
simulation involves the Brachistochrone problem, solved using Johann Bernoulli’s application
of Snell’s Law to the problem, treating a particle as a beam of light [10]. Each of the
visualizations is sufficiently interactive in nature, engaging the user through user input,
mouse movement, and real-time plots.

2 Simulations

2.1 Reflection of Light

The first program shows all possible trajectories for light to travel from Point A to B if it
must strike a metal surface.

The program consists of three main components: dragging, bouncing, and drawing. The
first component is dragging, which enables the user to move two green balls that determine
the initial and final position of the light beam. To enable this component, three functions
must be defined, each linked to a mouse click event. One such event is shown below.

def move():

global drag, point

if drag and len(coords) <= 2:

point.pos = scene.mouse.pos

else:

base.pos = scene.mouse.pos

scene.bind("mousemove", move)

The second component is bouncing. A hit point on the metal is determined, on which the
light beam will strike. The directional vector from the point to the initial position directs
the light beam on half its journey. To detect when the light beam hits the metal surface,
the program checks whether the vertical position of the beam meets the center of mass of
the metal added to its width. The directional vector is recalculated from the final position
to the hit point to direct the light beam on the final half of its journey.

light.v=v0*norm(gpoint-p1.pos)

while light.pos.y>=(base.pos.y+.25):

rate(200)

light.pos=light.pos+light.v*dt

action += dt

t=t+dt

light.v=v0*norm(p2.pos-gpoint)

The third component is drawing. Drawing real-time plots of the light beam’s movement
is simple. Every plot involves three commands: a graph, a curve, and a plot. One such
example for the Angle of Incidence versus the Light Time is shown below.
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tgraph=graph(title = 'Time vs. Angle', xtitle="Angle [Deg]", ytitle="Light

Time [s]", fast=False)↪→

f1=gcurve(graph = tgraph, color=color.blue, markers=True,

marker_color=color.blue, label = 'Incident', legend = True)↪→

f1.plot(temp[1]*180/pi,temp[0])

The user is able to pick and drag the initial and final position of the beam of light. This
interactive element reinforces the different initial values given for Classical Newtonian Me-
chanics rather than the Action Principle. In the former, we are given the initial position and
velocity. In the latter, we are simply given boundary conditions — the endpoints of the light
beam’s trajectory. As all possible trajectories from A to B are traced out on the screen, real-
time plots are generated indicating the relationship between the Incidence Angle, Reflection
Angle, Light Time, and Action. This element enables the student to conjecture by inspec-
tion that the Action is minimized when the Light Time is minimized and the Reflection and
Incidence Angles are equal.

2.2 Refraction of Light

The second program shows all possible trajectories for light to refract from Point A to B if
it must strike the metal surface.

Similar to the first program, the second program also involves three components: drag-
ging, refraction, and iteration. The first component is dragging, which enables the student
to determine the light beam’s initial position in the first material and final position in the
second material. This involves defining a click event and a function linked to the event. One
such event is shown below.

def down():

global drag, point

if len(coords) < 2:

point = sphere(pos=scene.mouse.pos, color=color.red)

coords.append(point.pos)

drag = True

scene.bind("mousedown", down)

The second component is refraction, which adjusts the direction of the light beam such that
it reaches the final point. To do so, the directional vector is recomputed, as is the new speed
of light to account for the index of refraction.

light.v=v_new*norm(aim)

thetar=acos(light.v.y/v_new)

while light.pos.y < (glass.pos.y+5) and light.pos.y > p2.pos.y:

rate(200)

light.pos=light.pos+light.v*dt
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t=t+dt

return(t,thetai,thetar)

The third component is iteration, which involves incrementing the hit point on the surface
of the second material by some constant, until all possible trajectories for the light beam are
generated. To do so, a for loop asks the time function to increase the horizontal argument
by some arbritrary constant. Note that as this constant approaches 0, the accuracy of the
incidence and refraction time increases, but so does the computation time.

for i in range (1,12):

temp=lighttime(vector((glass.pos.x-5)+x,glass.pos.y+5,glass.pos.z))

print("Incident = ", temp[1]*180/pi," Refraction =",180 -

temp[2]*180/pi," Time = ",temp[0]," s")↪→

x=x+dx

Like the previous program, the user can select and drag the initial and final position of the
beam of light. As it traces out every possible trajectory, this reinforces the PLA’s tendency
to examine every path and select the one of least action, as opposed to the frame-by-frame
nature of Classical Newtonian Mechanics, where position and momentum is given at the
present and asked to find at some time in the future. Once again, real-time plots of the
Incidence Angle, Refraction Angle, Light Time and Action are traced. This element not
only enables the student to identify the path of least action, but also thereby conjecture
Snell’s Law.

2.3 Brachistochrone

The third program shows the time for a given path between two points. A numerical simu-
lation is used to approximate the times for a given path between two points. To do so, the
visualization involves three components: Partition, Approximation, and Modulation. The
first component is partitioning, which involves breaking up a drawn path into its component
points. Each pair of consecutive points are then taken and used to create a cylinder.

for i in range (starts[len(starts)-1],len(scene.objects)-1):

newPart = sphere(radius = 0.1, pos = scene.objects[i].pos)

partsOfCurve.append(newPart)

The second component is approximation, which involves estimating each cylinder as an
inclined plane with a = g sin(θ). θ is taken by the ratio of the horizontal component of
the wire to the magnitude of its length. The integrals of this function is taken to get the
magnitude of the velocity and position functions. The direction of these functions is set by
taking the norm of cylinder on which the particle is traveling.

for i in range(0,len(partsOfCurve)-1):

string = cylinder(pos = partsOfCurve[i].pos, axis =

partsOfCurve[i+1].pos - partsOfCurve[i].pos, radius = 0.1,

color = color.magenta)

↪→

↪→
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wholeWire.append(string)

ball.a=g*sin(wholeWire[numParts-1].axis.x/mag(wholeWire[numParts-1].axis))

*norm(wholeWire[numParts-1].axis)↪→

The third component is modulation, which involves a ”hand-off” process. This process boils
down to a recursive algorithm that takes the previous velocity and uses it as the seed for the
initial velocity of the ball’s next trajectory.

if ball.pos.y > wholeWire[j].pos.y:

ball.a =

g*sin(wholeWire[j].axis.x/mag(wholeWire[j].axis))

*norm(wholeWire[j].axis)

↪→

↪→

else:

ball.a = -1 *

g*sin(wholeWire[j].axis.x/mag(wholeWire[j].axis))

*norm(wholeWire[j].axis)

↪→

↪→

The user can select any two points to denote the endpoints of the particle’s trajectory. They
can then draw an arbitrary number of paths between the two paths, with a time and action
generated for each path. Each path also involves an animation with real-time graphs of the
particle’s Kinetic and Potential Energy and its Action. Given enough time and trail-and-
error, the user should realize the goldilocks balance between gaining acceleration and ceding
horizontal distance occurs in the case of a Brachistochrone, which is formed by tracing the
trajectory of a point on the circumference of a cycloid.

3 Conclusion

In summary, the three numerical simulations outlined above are designed to address previously-
known student difficulties with the Principle of Least Action. The programs use mouse in-
teractivity, keyboard input, GlowScript animations, and graphical plots to engage students.
Each of the three programs give a different perspective of the Principle of Least Action,
through the reflective and refractive properties of light and through the Brachistachrone
problem. Because of their interactive and interdisciplinary nature, these programs should
help students intuitively understand the Action Principle to a deeper extent.
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